欧美精品aa_丁香花高清在线观看完整版_国产高清日韩_久久精品亚洲94久久精品

八年級下冊數學教案大全

| 新華0

教案的編寫可以幫助教師提高教學質量和效率,從而提高學生的成績和自信心。八年級下冊數學教案大全怎么寫,這里給大家分享八年級下冊數學教案大全,供大家參考。

八年級下冊數學教案大全篇1

一、學習目標及重、難點:

1、了解方差的定義和計算公式。

2、理解方差概念的產生和形成的過程。

3、會用方差計算公式來比較兩組數據的波動大小。

重點:方差產生的必要性和應用方差公式解決實際問題。

難點:理解方差公式

二、自主學習:

(一)知識我先懂:

方差:設有n個數據,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用

來表示。

給力小貼士:方差越小說明這組數據越。波動性越。

(二)自主檢測小練習:

1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為。

2、甲、乙兩組數據如下:

甲組:1091181213107;

乙組:7891011121112.

分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

三、新課講解:

引例:問題:從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數:=)

(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了)

歸納:方差:設有n個數據,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用來表示。

(一)例題講解:

例1、段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

測試次數 第1次第2次第3次第4次第5次

段巍1314131213

金志強1013161412

給力提示:先求平均數,在利用公式求解方差。

(二)小試身手

1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環數的平均數是,但S=,S=,則SS,所以確定

去參加比賽。

1、求下列數據的眾數:

(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2

2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

四、課堂小結

方差公式:

給力提示:方差越小說明這組數據越。波動性越。

每課一首詩:求方差,有公式;先平均,再求差;

求平方,再平均;所得數,是方差。

五、課堂檢測:

1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽10.810.911.010.711.111.110.811.010.710.9

小兵10.910.910.810.811.010.910.811.110.910.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

六、課后作業:必做題:教材141頁練習1、2選做題:練習冊對應部分習題

七、學習小札記:

寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

八年級下冊數學教案大全篇2

從分數到分式

一、 教學目標

1. 了解分式、有理式的概念.

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件.

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

三、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出:_____

2.學生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數,列方程.

設江水的流速為x千米/時.

輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.

3. 以上的式子_____有什么共同點?它們與分數有什么相同點和不同點?

五、例題講解

P5例1. 當x為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母x的取值范圍.

[提問]如果題目為:當x為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2. 當m為何值時,分式的值為0?

(1) (2) (3)

[分析] 分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 當x取何值時,下列分式有意義?

(1) (2) (3)

3. 當x為何值時,分式的值為0?

(1) (2) (3)

七、課后練習

1.列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

(3)x與y的差于4的商是 .

2.當x取何值時,分式 無意義?

3. 當x為何值時,分式 的值為0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b,,; 整式:8x,a+b, ;

分式:,

2. X = 3. x=-1

課后反思:

八年級下冊數學教案大全篇3

一、教學目標

1、了解公式的意義,使學生能用公式解決簡單的實際問題;

2、初步培養學生觀察、分析及概括的能力;

3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

二、重難點

(一)教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

(二)重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的.辨證思想。

四、教法建議

1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

五、教學目標

(一)知識教學點

1、使學生能利用公式解決簡單的實際問題。

2、使學生理解公式與代數式的關系。

(二)能力訓練點

1、利用數學公式解決實際問題的能力。

2、利用已知的公式推導新公式的能力。

(三)德育滲透點

數學來源于生產實踐,又反過來服務于生產實踐。

(四)美育滲透點

數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。

六、教學步驟

(一)創設情景,復習引入

師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。

在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。

板書:公式

師:小學里學過哪些面積公式?

板書:S=ah

(出示投影1)。解釋三角形,梯形面積公式。

八年級下冊數學教案大全篇4

學習目標:

(1)了解運用公式法分解因式的意義;

(2)會用完全平方公式進行因式分解;

(3)清楚優先提取公因式,然后考慮用公式

中考考點:正向、逆向運用公式,特別是配方法是必考點。

預習作業:

1. 完全平方公式字母表示: .

2、形如或的式子稱為

3. 結構特征:項數、次數、系數、符號

填空:

(1)(a+b)(a-b) = ;

(2)(a+b)2= ;

(3)(a–b)2= ;

根據上面式子填空:

(1)a2–b2= ;

(2)a2–2ab+b2= ;

(3)a2+2ab+b2= ;

結 論:形如a2+2ab+b2 與a2–2ab+b2的式子稱為完全平方式.

a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2

完全平方公式特點:首平方,尾平方,積的2倍在中央,符號看前方。

例1: 把下列各式因式分解:

(1)x2–4x+4 (2)9a2+6ab+b2

(3)m2– (4)

例2、將下列各式因式分解:

(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy

注:優先提取公因式,然后考慮用公式

例3: 分解因式

(1) (2)

(3) (4)

點撥:把 分解因式時:

1、如果常數項q是正數,那么把它分解成兩個同號因數,它們的符號與一次項系數P的符號相同

2、如果常數項q是負數,那么把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數P的符號相同

3、對于分解的兩個因數,還要看它們的和是不是等于一次項的系數P

變式練習:

(1) (2)

(3)

借助畫十字交叉線分解系數,從而幫助我們把二次三項式分解因式的方法,

叫做十字相乘法

口訣:首尾拆,交叉乘,湊中間。

拓展訓練:

若把代數式化為的形式,其中m,k為常數,求m+k的值

已知,求x,y的值

當x為何值時,多項式取得最小值,其最小值為多少?

回顧與思考

學習目標:

(1)提高因式分解的基本運算技能

(2)能熟練進行因式分解方法的綜合運用.

學習準備:

1、把一個多項式化成 的形式,叫做把這個多項式分解因式。

要弄清楚分解因式的概念,應把握如下特點:

(1)結果一定是 的形式;

(2)每個因式都是 ;

(3)各因式一定要分解到 為止。

2、分解因式與 是互逆關系。

3、分解因式常用的方法有:

(1)提公因式法:

(2)應用公式法:①平方差公式: ②完全平方公式:

(3)分組分解法:am+an+bm+bn=

(4)十字相乘法:=

4、分解因式步驟:

(1)首先考慮提取 ,然后再考慮套公式;

(2)對于二次三項式聯想到平方差公式因式分解;

(3)對于二次三項式聯想到完全平方公式,若不行再考慮十字相乘法分解因式;

(4)超過三項的多項式考慮分組分解;

(5)分解完畢不要大意,檢查是否分解徹底。

辨析題:

1、下列哪些式子的變形是因式分解?

(1)x2–4y2=(x+2y)(x–2y)

(3)4m2–6mn+9n2 =2m(2m–3n)+9n2

(4)m2+6mn+9n2=(m+3n)2

2、把下列各式分解因式:

(1)7x2–63 (2)(x+y)2–14(x+y)+49

(3) (4)(a2+4)2–16a2

(5) (6)

(7) (8)

想一想

計算:

1、32004–32003 2、(–2)101+(–2)100

3、已知 ,求的值.

例1: 把下列各式因式分解(分組后能提公因式)

(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx

(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m

點撥:

1、用分組分解法時,一定要想想分組后能否繼續進行,完成因式分解,由此合理選擇分組的方法

2、運算律(如加法交換律、分配律)在因式分解中起著重要的作用

八年級下冊數學教案大全篇5

教學目標:

1、知識目標:探索圖形之間的變換關系(軸對稱、平移、旋轉及其組合)。

2、能力目標:

①經歷對具有旋轉特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

②能夠按要求作出簡單平面圖形旋轉后的圖形,并在此基礎上達到鞏固旋轉的有關性質。

3、情感體驗點:培養學生的觀察能力和審美能力,激發學生學習數學的興趣。

重點與難點:

重點:圖形之間的變換關系(軸對稱、平移、旋轉及其組合);

難點:綜合利用各種變換關系觀察圖形的形成。

疑點:基本圖案不同,形成方式不同。

教學方法:

新授課在教師引導下,以學生的分組討論、合作交流為主展開教學。

教學過程設計:

1、情境導入

播放自制圖形形成的影片,如圖351。

2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經過適當的旋轉得到其他三部分嗎?能經過平移嗎?能經過軸對稱嗎?還有其它方式嗎?

問題本身為學生創設了一個探究圖形之間變化關系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學生自由發揮,各抒已見,后由教師進行適當歸納小結:

(1)整個圖形可以看做是由一個十字組成部分通過連續七次平移前后的圖形共同組成;

(2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

(3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉90度前后的圖形共同組成;

(4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

(學生可能還有其他不同描述,教師應予以肯定)

3、通過上述問題的討論,我們看到圖形的平移、旋轉,軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設計圖案的主要手段。

4、利用想一想你能將圖352的左圖,通過平移或旋轉得到右圖嗎?

學生議論或動手操作會發現這是不可能的,教材意圖十分明確,要告訴學生并不是所有圖形都可以通過一次平移或旋轉而得到的,從而要求我們今后分析圖形之間的關系時,要充分利用它們各自的性質、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學生思考,從而得到結論是可能的。

5、例1、怎樣將圖353中的甲圖變成乙圖案?

通過相對簡單活潑的問題,讓學生能運用圖形變換的幾種不同方式解答問題(先旋轉再平移后等到或先平移后旋轉也可以)

例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

留給學生充足的時間討論交流。

(師):哪位同學有好好方法,請告訴大家!

(生):以右圖案的中心為旋轉中心,將圖案按逆時針方向旋轉900。

(生):以右圖案的中心為旋轉中心,將圖案順逆時針方向旋轉2700。

明確可以通過不同的辦法達到同樣的效果,激勵學生動手動腦。

5、學習小結

(1)內容總結

兩個圖案前后變化彩用了哪些方法?(平移、旋轉,軸對稱)

(2)方法歸納

①了解并知道圖案變化的一般方法。

②圖案變化的方法很多,在生活中要養成多途徑觀察,思考問題的習慣。

6、目標檢測

圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經過怎樣的變換而得到?

延伸拓展:

1、鏈接生活

鏈接一:奧運會的五環旗圖案是大家熟悉的圖案,請你根據所學知識分析它的形成。(用課本知識解釋生活中的圖形變換)

鏈接二:夏季是荷花盛開的季節,同學們都贊美過它出淤泥而不染的品質,很多同學曾畫過荷花,請你用所學知識再畫一朵荷花,看與以前有什么不同的感受(讓學生進一步體會數學與生活的密切聯系)

實踐探索:

①實踐活動列舉實例歸納圖形之間的變換關系(平移、旋轉,軸對稱及其組合)

②鞏固練習課本74頁中的習題3.6。

板書設計:

3.5它們是怎樣變過來的。

軸對稱、平移、旋轉的性質例題;

圖形之間的變換關系;

八年級下冊數學教案大全篇6

教學內容分析:

⑴學習特殊的平行四邊形—正方形,它的特殊的性質和判定。

⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

⑶對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。

學生分析:

⑴學生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

⑵學生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

教學目標:

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

⑶情感態度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

重點:

掌握正方形的性質與判定,并進行簡單的推理。

難點:

探索正方形的判定,發展學生的推理能

教學方法:

類比與探究

教具準備:

可以活動的四邊形模型。

教學過程:

一:復習鞏固,建立聯系。

【教師活動】

問題設置:①平行四邊形、矩形,菱形各有哪些性質?

②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

【學生活動】

學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

【教師活動】

評析學生的結果,給予表揚。

總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。

演示平行四邊形變為矩形菱形的過程。

二:動手操作,探索發現。

活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

【學生活動】

學生拿出自備矩形紙片,動手操作,不難發現它是正方形。

設置問題:①什么是正方形?

觀察發現,從活動中體會。

【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。

【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。

設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學生活動】

小組討論,分組回答。

【教師活動】

總結板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設置問題③正方形有那些性質?

【學生活動】

小組討論,舉手搶答。

【教師活動】

表揚學生發言,板書學生發現,㈡正方形每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

學生活動

折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

學生活動

小組充分交流,表達不同的意見。

教師活動

評析活動,總結發現:

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的`判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?

學生交流,感受正方形

三,應用體驗,推理證明。

出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。

方法一解:∵四邊形ABCD是正方形

∴∠ABC=90°(正方形的四個角是直角)。

BC=AB=4cm(正方形的四條邊相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的對角線互相平分)

∴AO=×4=2cm

方法二:證明△AOB是等腰直角三角形,即可得證。

學生活動

獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動

總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節課你有什么收獲?

學生舉手談論自己的收獲。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

發表評論

八年級下冊數學教案大全篇7

1、變量與常量

在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。

2、函數解析式

用來表示函數關系的數學式子叫做函數解析式或函數關系式。

使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數的三種表示法及其優缺點

(1)解析法

兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數關系的方法叫做圖像法。

4、由函數解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數的一些對應值。

(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。

(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

八年級下冊數學教案大全篇8

教材分析

1、本節課首先從最簡單的正比例函數入手.從正比例函數的定義、函數關系式、引入次函數的概念。

2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。

學情分析

1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。

2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。

3、學生認知障礙點:根據問題信息寫出一次函數的表達式。

教學目標

1、理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。

2、能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。

3、經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。

教學重點和難點

1、一次函數、正比例函數的概念及關系。

2、會根據已知信息寫出一次函數的表達式。

八年級下冊數學教案大全篇9

教學目標:

知識目標:

1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數學問題。

能力目標:

1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

情感目標:

1、經歷函數概念的抽象概括過程,體會函數的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

教學重點:

掌握函數概念。

判斷兩個變量之間的關系是否可看作函數。

能把實際問題抽象概括為函數問題。

教學難點:

理解函數的概念。

能把實際問題抽象概括為函數問題。

教學過程設計:

一、創設問題情境,導入新課

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

『生』:摩天輪。

『師』:你們坐過嗎?

……

『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

t/分012345……h/米

t/分012345……h/米31137453711……

『師』:對于給定的時間t,相應的高度h確定嗎?

『生』:確定。

『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

『生』:研究的對象有兩個,是時間t和高度h。

『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

二、新課學習

做一做

(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?

填寫下表:

層數n12345…物體總數y1361015…『師』:在這個問題中的變量有幾個?分別師什么?

『生』:變量有兩個,是層數與圓圈總數。

(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

②給定一個V值,你能求出相應的S值嗎?

解:略

議一議

『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

『生』:相同點是:這三個問題中都研究了兩個變量。

不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

函數的概念

在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

三、隨堂練習

書P152頁隨堂練習1、2、3

四、本課小結

初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

函數的三種表達式:

圖象;(2)表格;(3)關系式。

五、探究活動

為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

(答案:Y=1.8x-6或)

六、課后作業

習題6.1

八年級下冊數學教案大全篇10

等腰三角形

一、教學目標如:

1.知識目標:理解作為證明基礎的幾條公理的內容,應用這些公理證明等腰三角形的性質定理;熟悉證明的基本步驟和書寫格式。

2.能力目標:經歷“探索-發現-猜想-證明”的過程,讓學生進一步體會證明是探索活動的自然延續和必要發展,發展學生的初步的演繹邏輯推理的能力;

3.情感與價值目標:啟發引導學生體會探索結論和證明結論,及合情推理與演繹的相互依賴和相互補充的辯證關系;

二.教學重、難點

重點:探索證明等腰三角形性質定理的思路與方法,掌握證明的基本要求和方法;

難點:明確推理證明的基本要求如明確條件和結論,能否用數學語言正確表達等。

三、教學過程分析

第一環節:回顧舊知 導出公理

請學生回憶并整理已經學過的8條基本事實。其中證明三角形全等的有以下三條:

.兩邊夾角對應相等的兩個三角形全等(SAS);

.兩角及其夾邊對應相等的兩個三角形全等(ASA);

三邊對應相等的兩個三角形全等(SSS);

在此基礎上回憶全等三角形的另一判別條件:1.(推論)兩角及其中一角的對邊對應相等的兩個三角形全等(AAS),并要求學生利用前面所提到的公理進行證明;

.回憶全等三角形的性質。

已知:如圖,∠A=∠D,∠B=∠E,BC=EF.

求證:△ABC≌△DEF.

證明:∵∠A=∠D,∠B=∠E(已知),

又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內角和等于180°),

∴∠C=180°-(∠A+∠B),

∠F=180°-(∠D+∠E),

∴∠C=∠F(等量代換)。

又BC=EF(已知),∴△ABC≌△DEF(ASA)。

第二環節:折紙活動探索新知

提問:“等腰三角形有哪些性質?如何探索這些性質的,你能再次通過折紙活動驗證這些性質嗎?并根據折紙過程,得到這些性質的證明嗎?”

第三環節:明晰結論和證明過程

讓學生明晰證明過程。

(1)等腰三角形的兩個底角相等;

(2)等腰三角形頂角的平分線、底邊中線、底邊上高三條線重合

八年級下冊數學教案大全篇11

教學目標:

1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

教學重點:

算術平方根的概念。

教學難點:

根據算術平方根的概念正確求出非負數的算術平方根。

教學過程

一、情境導入

請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數的平方,求這個正數的問題?

這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

二、導入新課:

1、提出問題:(書P68頁的問題)

你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

這個問題相當于在等式擴=25中求出正數x的值.

一般地,如果一個正數x的平方等于a,即=a,那么這個正數x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

也就是,在等式=a(x0)中,規定x=.

2、試一試:你能根據等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。

4、例1求下列各數的算術平方根:

(1)100;(2)1;(3);(4)0.0001

三、練習

P69練習1、2

四、探究:(課本第69頁)

怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵學生探究。

問題:這個大正方形的邊長應該是多少呢?

大正方形的邊長是,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

五、小結:

1、這節課學習了什么呢?

2、算術平方根的具體意義是怎么樣的?

3、怎樣求一個正數的算術平方根

六、課外作業:

P75習題13.1活動第1、2、3題

八年級下冊數學教案大全篇12

一、教學目標

1.了解公式的意義,使學生能用公式解決簡單的實際問題;

2.初步培養學生觀察、分析及概括的能力;

3.通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

二、教學建議

(一)教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

(二)重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

(三)知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

三、教法建議

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

八年級下冊數學教案大全篇13

1、在同一平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內兩條直線的位置關系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…

平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用“”表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…

第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特征以及彼此之間的關系1.矩形是特殊的平行四邊形,矩形的四個內角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…

特殊的平行四邊形和一元二次方程的知識點歸納

【菱形】

1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

2.菱形的性質:

(1)菱形的性質有:①平行四邊形的一切性質;②四條邊都相等;③對角線互相垂直,并且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。

(2)菱形面積=底×高=對角線乘積的一半。

3.菱形的判定:

(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。

(2)對角線互相垂直的平行四邊形是菱形。

(3)四條邊都相等的四邊形是菱形。

綜上可知,判定菱形時常用的思路:

四條邊都相等菱形

菱形四邊形

平行

四邊形有一組鄰邊相等菱形

【矩形】

1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。

2.矩形的性質:(1)具有平行四邊形的一切性質;(2)矩形的四個角都是直角;

(3)矩形的四個角都相等。

4.矩形的判定方法:

(1)用定義判定(即有一個角是直角的平行四邊形是矩形);

(2)三個角都是直角的四邊形是矩形;

(3)對角線相等的平行四邊形是矩形。

綜上可知,判定矩形時常用的思路:

【正方形】

1.正方形的定義:有一組鄰邊相等,并且有一個角是直角的平行四邊形叫做正方形。

2.正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。

(1)邊:四條邊相等,鄰邊垂直且相等,對邊平行且相等。

1(2)角:四個角都是直角。

(3)對角線:對角線相等且互相垂直平分,每條對角線平分一組對角。

3.正方形的判定

(1)根據定義判定;(2)對角線相等的菱形是正方形;

(2)有一個角是直角的菱形是正方形;

(3)有一組鄰邊相等的矩形是正方形;

(4)對角線互相垂直的矩形是正方形。

4.特殊的平行四邊形之間的關系

矩形、菱形是特殊的平行四邊形,正方形是更特殊的平行四邊形,它既是矩形,又是菱形,它們之間的關系如圖所示:

5.依次連接四邊形各邊中點所得到的四邊形的形狀:

(1)依次連接任意四邊形各邊中點所得到的四邊形是平行變形;

(2)依次連接對角線相等的四邊形各邊中點所得到的四邊形是菱形;

(3)依次連接對角線垂直的四邊形各邊中點所得到的四邊形是矩形;

(4)依次連接對角線垂直且相等的四邊形各邊中點所得到的四邊形是正方形;

八年級下冊數學教案大全篇14

一、教學目標

(一)知識與技能:

(1)使學生了解因式分解的意義,理解因式分解的概念。

(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

(二)過程與方法:

(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。

(三)情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。

二、教學重點和難點

重點:因式分解的概念及提公因式法。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

三、教學過程

教學環節:

活動1:復習引入

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2、67×132+25×2、67+7×2、67=;

(3)992–1=。

設計意圖:

如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉。引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階。

注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

活動2:導入課題

P165的探究(略);

2、看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

設計意圖:

引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

活動3:探究新知

看誰算得準:

計算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。

活動4:歸納、得出新知

比較以下兩種運算的聯系與區別:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級下冊數學教案大全篇15

1、教材分析

(1)知識結構

(2)重點、難點分析

本節內容的重點是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據。

本節內容的難點是定理及逆定理的關系。垂直平分線定理和其逆定理,題設與結論正好相反。學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點。

2、教法建議

本節課教學模式主要采用“學生主體性學習”的教學模式。提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納。教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人。具體說明如下:

(1)參與探索發現,領略知識形成過程

學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”。然后學生完成證明,找一名學生的證明過程,進行投影總結。最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理。這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

(2)采用“類比”的學習方法,獲取逆定理

線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系。

(3)通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力。

516712 主站蜘蛛池模板: 蓝田县| 广州市| 盐池县| 镇原县| 临夏市| 潮安县| 仁寿县| 衡山县| 高安市| 富宁县| 且末县| 清苑县| 本溪| 宁安市| 将乐县| 依安县| 昌吉市| 黎城县| 沈丘县| 龙川县| 普宁市| 武定县| 龙陵县| 合肥市| 涟水县| 江都市| 古交市| 商水县| 鹤岗市| 高台县| 奈曼旗| 深泽县| 齐河县| 铅山县| 武穴市| 商洛市| 桐梓县| 香港| 中西区| 达拉特旗| 中山市|